3.8.86 \(\int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}} \, dx\) [786]

3.8.86.1 Optimal result
3.8.86.2 Mathematica [C] (verified)
3.8.86.3 Rubi [A] (verified)
3.8.86.4 Maple [A] (verified)
3.8.86.5 Fricas [A] (verification not implemented)
3.8.86.6 Sympy [F]
3.8.86.7 Maxima [A] (verification not implemented)
3.8.86.8 Giac [F]
3.8.86.9 Mupad [B] (verification not implemented)

3.8.86.1 Optimal result

Integrand size = 43, antiderivative size = 311 \[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {21 (11 i A+B) \text {arctanh}\left (\frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {2} \sqrt {c}}\right )}{512 \sqrt {2} a^3 c^{5/2} f}-\frac {21 (11 i A+B)}{640 a^3 f (c-i c \tan (e+f x))^{5/2}}+\frac {i A-B}{6 a^3 f (1+i \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}}+\frac {11 i A+B}{48 a^3 f (1+i \tan (e+f x))^2 (c-i c \tan (e+f x))^{5/2}}+\frac {3 (11 i A+B)}{64 a^3 f (1+i \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}-\frac {7 (11 i A+B)}{256 a^3 c f (c-i c \tan (e+f x))^{3/2}}-\frac {21 (11 i A+B)}{512 a^3 c^2 f \sqrt {c-i c \tan (e+f x)}} \]

output
21/1024*(11*I*A+B)*arctanh(1/2*(c-I*c*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2))/a 
^3/c^(5/2)/f*2^(1/2)-21/512*(11*I*A+B)/a^3/c^2/f/(c-I*c*tan(f*x+e))^(1/2)- 
21/640*(11*I*A+B)/a^3/f/(c-I*c*tan(f*x+e))^(5/2)+1/6*(I*A-B)/a^3/f/(1+I*ta 
n(f*x+e))^3/(c-I*c*tan(f*x+e))^(5/2)+1/48*(11*I*A+B)/a^3/f/(1+I*tan(f*x+e) 
)^2/(c-I*c*tan(f*x+e))^(5/2)+3/64*(11*I*A+B)/a^3/f/(1+I*tan(f*x+e))/(c-I*c 
*tan(f*x+e))^(5/2)-7/256*(11*I*A+B)/a^3/c/f/(c-I*c*tan(f*x+e))^(3/2)
 
3.8.86.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.41 (sec) , antiderivative size = 187, normalized size of antiderivative = 0.60 \[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {\sec ^3(e+f x) \left (30 (71 A+11 i B) \cos (e+f x)-16 (A-11 i B) \cos (3 (e+f x))-105 (11 A-i B) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},-\frac {1}{2} i (i+\tan (e+f x))\right ) \sec (e+f x) (\cos (2 (e+f x))+i \sin (2 (e+f x)))+2 (11 i A+B) (55 \sin (e+f x)-8 \sin (3 (e+f x)))\right )}{3840 a^3 c^2 f (-i+\tan (e+f x))^3 (i+\tan (e+f x))^2 \sqrt {c-i c \tan (e+f x)}} \]

input
Integrate[(A + B*Tan[e + f*x])/((a + I*a*Tan[e + f*x])^3*(c - I*c*Tan[e + 
f*x])^(5/2)),x]
 
output
(Sec[e + f*x]^3*(30*(71*A + (11*I)*B)*Cos[e + f*x] - 16*(A - (11*I)*B)*Cos 
[3*(e + f*x)] - 105*(11*A - I*B)*Hypergeometric2F1[-3/2, 1, -1/2, (-1/2*I) 
*(I + Tan[e + f*x])]*Sec[e + f*x]*(Cos[2*(e + f*x)] + I*Sin[2*(e + f*x)]) 
+ 2*((11*I)*A + B)*(55*Sin[e + f*x] - 8*Sin[3*(e + f*x)])))/(3840*a^3*c^2* 
f*(-I + Tan[e + f*x])^3*(I + Tan[e + f*x])^2*Sqrt[c - I*c*Tan[e + f*x]])
 
3.8.86.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 295, normalized size of antiderivative = 0.95, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.256, Rules used = {3042, 4071, 27, 87, 52, 52, 61, 61, 61, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 4071

\(\displaystyle \frac {a c \int \frac {A+B \tan (e+f x)}{a^4 (i \tan (e+f x)+1)^4 (c-i c \tan (e+f x))^{7/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {c \int \frac {A+B \tan (e+f x)}{(i \tan (e+f x)+1)^4 (c-i c \tan (e+f x))^{7/2}}d\tan (e+f x)}{a^3 f}\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {c \left (\frac {1}{12} (11 A-i B) \int \frac {1}{(i \tan (e+f x)+1)^3 (c-i c \tan (e+f x))^{7/2}}d\tan (e+f x)+\frac {-B+i A}{6 c (1+i \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}}\right )}{a^3 f}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {c \left (\frac {1}{12} (11 A-i B) \left (\frac {9}{8} \int \frac {1}{(i \tan (e+f x)+1)^2 (c-i c \tan (e+f x))^{7/2}}d\tan (e+f x)+\frac {i}{4 c (1+i \tan (e+f x))^2 (c-i c \tan (e+f x))^{5/2}}\right )+\frac {-B+i A}{6 c (1+i \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}}\right )}{a^3 f}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {c \left (\frac {1}{12} (11 A-i B) \left (\frac {9}{8} \left (\frac {7}{4} \int \frac {1}{(i \tan (e+f x)+1) (c-i c \tan (e+f x))^{7/2}}d\tan (e+f x)+\frac {i}{2 c (1+i \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{4 c (1+i \tan (e+f x))^2 (c-i c \tan (e+f x))^{5/2}}\right )+\frac {-B+i A}{6 c (1+i \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}}\right )}{a^3 f}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {c \left (\frac {1}{12} (11 A-i B) \left (\frac {9}{8} \left (\frac {7}{4} \left (\frac {\int \frac {1}{(i \tan (e+f x)+1) (c-i c \tan (e+f x))^{5/2}}d\tan (e+f x)}{2 c}-\frac {i}{5 c (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{2 c (1+i \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{4 c (1+i \tan (e+f x))^2 (c-i c \tan (e+f x))^{5/2}}\right )+\frac {-B+i A}{6 c (1+i \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}}\right )}{a^3 f}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {c \left (\frac {1}{12} (11 A-i B) \left (\frac {9}{8} \left (\frac {7}{4} \left (\frac {\frac {\int \frac {1}{(i \tan (e+f x)+1) (c-i c \tan (e+f x))^{3/2}}d\tan (e+f x)}{2 c}-\frac {i}{3 c (c-i c \tan (e+f x))^{3/2}}}{2 c}-\frac {i}{5 c (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{2 c (1+i \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{4 c (1+i \tan (e+f x))^2 (c-i c \tan (e+f x))^{5/2}}\right )+\frac {-B+i A}{6 c (1+i \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}}\right )}{a^3 f}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {c \left (\frac {1}{12} (11 A-i B) \left (\frac {9}{8} \left (\frac {7}{4} \left (\frac {\frac {\frac {\int \frac {1}{(i \tan (e+f x)+1) \sqrt {c-i c \tan (e+f x)}}d\tan (e+f x)}{2 c}-\frac {i}{c \sqrt {c-i c \tan (e+f x)}}}{2 c}-\frac {i}{3 c (c-i c \tan (e+f x))^{3/2}}}{2 c}-\frac {i}{5 c (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{2 c (1+i \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{4 c (1+i \tan (e+f x))^2 (c-i c \tan (e+f x))^{5/2}}\right )+\frac {-B+i A}{6 c (1+i \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}}\right )}{a^3 f}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {c \left (\frac {1}{12} (11 A-i B) \left (\frac {9}{8} \left (\frac {7}{4} \left (\frac {\frac {\frac {i \int \frac {1}{2-\frac {c-i c \tan (e+f x)}{c}}d\sqrt {c-i c \tan (e+f x)}}{c^2}-\frac {i}{c \sqrt {c-i c \tan (e+f x)}}}{2 c}-\frac {i}{3 c (c-i c \tan (e+f x))^{3/2}}}{2 c}-\frac {i}{5 c (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{2 c (1+i \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{4 c (1+i \tan (e+f x))^2 (c-i c \tan (e+f x))^{5/2}}\right )+\frac {-B+i A}{6 c (1+i \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}}\right )}{a^3 f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {c \left (\frac {1}{12} (11 A-i B) \left (\frac {9}{8} \left (\frac {7}{4} \left (\frac {\frac {\frac {i \text {arctanh}\left (\frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {2} \sqrt {c}}\right )}{\sqrt {2} c^{3/2}}-\frac {i}{c \sqrt {c-i c \tan (e+f x)}}}{2 c}-\frac {i}{3 c (c-i c \tan (e+f x))^{3/2}}}{2 c}-\frac {i}{5 c (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{2 c (1+i \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}\right )+\frac {i}{4 c (1+i \tan (e+f x))^2 (c-i c \tan (e+f x))^{5/2}}\right )+\frac {-B+i A}{6 c (1+i \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}}\right )}{a^3 f}\)

input
Int[(A + B*Tan[e + f*x])/((a + I*a*Tan[e + f*x])^3*(c - I*c*Tan[e + f*x])^ 
(5/2)),x]
 
output
(c*((I*A - B)/(6*c*(1 + I*Tan[e + f*x])^3*(c - I*c*Tan[e + f*x])^(5/2)) + 
((11*A - I*B)*((I/4)/(c*(1 + I*Tan[e + f*x])^2*(c - I*c*Tan[e + f*x])^(5/2 
)) + (9*((I/2)/(c*(1 + I*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(5/2)) + (7* 
((-1/5*I)/(c*(c - I*c*Tan[e + f*x])^(5/2)) + ((-1/3*I)/(c*(c - I*c*Tan[e + 
 f*x])^(3/2)) + ((I*ArcTanh[Sqrt[c - I*c*Tan[e + f*x]]/(Sqrt[2]*Sqrt[c])]) 
/(Sqrt[2]*c^(3/2)) - I/(c*Sqrt[c - I*c*Tan[e + f*x]]))/(2*c))/(2*c)))/4))/ 
8))/12))/(a^3*f)
 

3.8.86.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4071
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si 
mp[a*(c/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x], x 
, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c 
+ a*d, 0] && EqQ[a^2 + b^2, 0]
 
3.8.86.4 Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 232, normalized size of antiderivative = 0.75

method result size
derivativedivides \(\frac {2 i c^{3} \left (-\frac {-i B +5 A}{32 c^{5} \sqrt {c -i c \tan \left (f x +e \right )}}-\frac {-i B +2 A}{48 c^{4} \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}}-\frac {-i B +A}{80 c^{3} \left (c -i c \tan \left (f x +e \right )\right )^{\frac {5}{2}}}+\frac {\frac {8 \left (\frac {11 i B}{256}+\frac {71 A}{256}\right ) \left (c -i c \tan \left (f x +e \right )\right )^{\frac {5}{2}}+8 \left (-\frac {59}{48} c A -\frac {11}{48} i B c \right ) \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}+8 \left (\frac {21}{64} i B \,c^{2}+\frac {89}{64} c^{2} A \right ) \sqrt {c -i c \tan \left (f x +e \right )}}{\left (c +i c \tan \left (f x +e \right )\right )^{3}}+\frac {21 \left (-\frac {i B}{8}+\frac {11 A}{8}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{8 \sqrt {c}}}{32 c^{5}}\right )}{f \,a^{3}}\) \(232\)
default \(\frac {2 i c^{3} \left (-\frac {-i B +5 A}{32 c^{5} \sqrt {c -i c \tan \left (f x +e \right )}}-\frac {-i B +2 A}{48 c^{4} \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}}-\frac {-i B +A}{80 c^{3} \left (c -i c \tan \left (f x +e \right )\right )^{\frac {5}{2}}}+\frac {\frac {8 \left (\frac {11 i B}{256}+\frac {71 A}{256}\right ) \left (c -i c \tan \left (f x +e \right )\right )^{\frac {5}{2}}+8 \left (-\frac {59}{48} c A -\frac {11}{48} i B c \right ) \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}+8 \left (\frac {21}{64} i B \,c^{2}+\frac {89}{64} c^{2} A \right ) \sqrt {c -i c \tan \left (f x +e \right )}}{\left (c +i c \tan \left (f x +e \right )\right )^{3}}+\frac {21 \left (-\frac {i B}{8}+\frac {11 A}{8}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{8 \sqrt {c}}}{32 c^{5}}\right )}{f \,a^{3}}\) \(232\)

input
int((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^3/(c-I*c*tan(f*x+e))^(5/2),x,metho 
d=_RETURNVERBOSE)
 
output
2*I/f/a^3*c^3*(-1/32/c^5*(5*A-I*B)/(c-I*c*tan(f*x+e))^(1/2)-1/48/c^4*(2*A- 
I*B)/(c-I*c*tan(f*x+e))^(3/2)-1/80/c^3*(A-I*B)/(c-I*c*tan(f*x+e))^(5/2)+1/ 
32/c^5*(8*((11/256*I*B+71/256*A)*(c-I*c*tan(f*x+e))^(5/2)+(-59/48*c*A-11/4 
8*I*B*c)*(c-I*c*tan(f*x+e))^(3/2)+(21/64*I*B*c^2+89/64*c^2*A)*(c-I*c*tan(f 
*x+e))^(1/2))/(c+I*c*tan(f*x+e))^3+21/8*(-1/8*I*B+11/8*A)*2^(1/2)/c^(1/2)* 
arctanh(1/2*(c-I*c*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2))))
 
3.8.86.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 464, normalized size of antiderivative = 1.49 \[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {{\left (315 \, \sqrt {\frac {1}{2}} a^{3} c^{3} f \sqrt {-\frac {121 \, A^{2} - 22 i \, A B - B^{2}}{a^{6} c^{5} f^{2}}} e^{\left (6 i \, f x + 6 i \, e\right )} \log \left (\frac {21 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{3} c^{2} f\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {121 \, A^{2} - 22 i \, A B - B^{2}}{a^{6} c^{5} f^{2}}} + 11 i \, A + B\right )} e^{\left (-i \, f x - i \, e\right )}}{256 \, a^{3} c^{2} f}\right ) - 315 \, \sqrt {\frac {1}{2}} a^{3} c^{3} f \sqrt {-\frac {121 \, A^{2} - 22 i \, A B - B^{2}}{a^{6} c^{5} f^{2}}} e^{\left (6 i \, f x + 6 i \, e\right )} \log \left (-\frac {21 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{3} c^{2} f\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {121 \, A^{2} - 22 i \, A B - B^{2}}{a^{6} c^{5} f^{2}}} - 11 i \, A - B\right )} e^{\left (-i \, f x - i \, e\right )}}{256 \, a^{3} c^{2} f}\right ) - \sqrt {2} {\left (48 \, {\left (i \, A + B\right )} e^{\left (12 i \, f x + 12 i \, e\right )} + 16 \, {\left (29 i \, A + 19 \, B\right )} e^{\left (10 i \, f x + 10 i \, e\right )} + 16 \, {\left (199 i \, A + 59 \, B\right )} e^{\left (8 i \, f x + 8 i \, e\right )} - {\left (-1433 i \, A - 1003 \, B\right )} e^{\left (6 i \, f x + 6 i \, e\right )} + 5 \, {\left (-329 i \, A + 101 \, B\right )} e^{\left (4 i \, f x + 4 i \, e\right )} + 10 \, {\left (-35 i \, A + 23 \, B\right )} e^{\left (2 i \, f x + 2 i \, e\right )} - 40 i \, A + 40 \, B\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-6 i \, f x - 6 i \, e\right )}}{15360 \, a^{3} c^{3} f} \]

input
integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^3/(c-I*c*tan(f*x+e))^(5/2),x 
, algorithm="fricas")
 
output
1/15360*(315*sqrt(1/2)*a^3*c^3*f*sqrt(-(121*A^2 - 22*I*A*B - B^2)/(a^6*c^5 
*f^2))*e^(6*I*f*x + 6*I*e)*log(21/256*(sqrt(2)*sqrt(1/2)*(a^3*c^2*f*e^(2*I 
*f*x + 2*I*e) + a^3*c^2*f)*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(-(121*A^ 
2 - 22*I*A*B - B^2)/(a^6*c^5*f^2)) + 11*I*A + B)*e^(-I*f*x - I*e)/(a^3*c^2 
*f)) - 315*sqrt(1/2)*a^3*c^3*f*sqrt(-(121*A^2 - 22*I*A*B - B^2)/(a^6*c^5*f 
^2))*e^(6*I*f*x + 6*I*e)*log(-21/256*(sqrt(2)*sqrt(1/2)*(a^3*c^2*f*e^(2*I* 
f*x + 2*I*e) + a^3*c^2*f)*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(-(121*A^2 
 - 22*I*A*B - B^2)/(a^6*c^5*f^2)) - 11*I*A - B)*e^(-I*f*x - I*e)/(a^3*c^2* 
f)) - sqrt(2)*(48*(I*A + B)*e^(12*I*f*x + 12*I*e) + 16*(29*I*A + 19*B)*e^( 
10*I*f*x + 10*I*e) + 16*(199*I*A + 59*B)*e^(8*I*f*x + 8*I*e) - (-1433*I*A 
- 1003*B)*e^(6*I*f*x + 6*I*e) + 5*(-329*I*A + 101*B)*e^(4*I*f*x + 4*I*e) + 
 10*(-35*I*A + 23*B)*e^(2*I*f*x + 2*I*e) - 40*I*A + 40*B)*sqrt(c/(e^(2*I*f 
*x + 2*I*e) + 1)))*e^(-6*I*f*x - 6*I*e)/(a^3*c^3*f)
 
3.8.86.6 Sympy [F]

\[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {i \left (\int \frac {A}{- c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{5}{\left (e + f x \right )} + i c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{4}{\left (e + f x \right )} - 2 c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{3}{\left (e + f x \right )} + 2 i c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{2}{\left (e + f x \right )} - c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan {\left (e + f x \right )} + i c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c}}\, dx + \int \frac {B \tan {\left (e + f x \right )}}{- c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{5}{\left (e + f x \right )} + i c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{4}{\left (e + f x \right )} - 2 c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{3}{\left (e + f x \right )} + 2 i c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{2}{\left (e + f x \right )} - c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan {\left (e + f x \right )} + i c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c}}\, dx\right )}{a^{3}} \]

input
integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))**3/(c-I*c*tan(f*x+e))**(5/2) 
,x)
 
output
I*(Integral(A/(-c**2*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**5 + I*c**2* 
sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**4 - 2*c**2*sqrt(-I*c*tan(e + f*x 
) + c)*tan(e + f*x)**3 + 2*I*c**2*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x) 
**2 - c**2*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x) + I*c**2*sqrt(-I*c*tan 
(e + f*x) + c)), x) + Integral(B*tan(e + f*x)/(-c**2*sqrt(-I*c*tan(e + f*x 
) + c)*tan(e + f*x)**5 + I*c**2*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)** 
4 - 2*c**2*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**3 + 2*I*c**2*sqrt(-I* 
c*tan(e + f*x) + c)*tan(e + f*x)**2 - c**2*sqrt(-I*c*tan(e + f*x) + c)*tan 
(e + f*x) + I*c**2*sqrt(-I*c*tan(e + f*x) + c)), x))/a**3
 
3.8.86.7 Maxima [A] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 291, normalized size of antiderivative = 0.94 \[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}} \, dx=-\frac {i \, {\left (\frac {4 \, {\left (315 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{5} {\left (11 \, A - i \, B\right )} - 1680 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{4} {\left (11 \, A - i \, B\right )} c + 2772 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{3} {\left (11 \, A - i \, B\right )} c^{2} - 1152 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{2} {\left (11 \, A - i \, B\right )} c^{3} - 256 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )} {\left (11 \, A - i \, B\right )} c^{4} - 1536 \, {\left (A - i \, B\right )} c^{5}\right )}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {11}{2}} a^{3} c - 6 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {9}{2}} a^{3} c^{2} + 12 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {7}{2}} a^{3} c^{3} - 8 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}} a^{3} c^{4}} + \frac {315 \, \sqrt {2} {\left (11 \, A - i \, B\right )} \log \left (-\frac {\sqrt {2} \sqrt {c} - \sqrt {-i \, c \tan \left (f x + e\right ) + c}}{\sqrt {2} \sqrt {c} + \sqrt {-i \, c \tan \left (f x + e\right ) + c}}\right )}{a^{3} c^{\frac {3}{2}}}\right )}}{30720 \, c f} \]

input
integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^3/(c-I*c*tan(f*x+e))^(5/2),x 
, algorithm="maxima")
 
output
-1/30720*I*(4*(315*(-I*c*tan(f*x + e) + c)^5*(11*A - I*B) - 1680*(-I*c*tan 
(f*x + e) + c)^4*(11*A - I*B)*c + 2772*(-I*c*tan(f*x + e) + c)^3*(11*A - I 
*B)*c^2 - 1152*(-I*c*tan(f*x + e) + c)^2*(11*A - I*B)*c^3 - 256*(-I*c*tan( 
f*x + e) + c)*(11*A - I*B)*c^4 - 1536*(A - I*B)*c^5)/((-I*c*tan(f*x + e) + 
 c)^(11/2)*a^3*c - 6*(-I*c*tan(f*x + e) + c)^(9/2)*a^3*c^2 + 12*(-I*c*tan( 
f*x + e) + c)^(7/2)*a^3*c^3 - 8*(-I*c*tan(f*x + e) + c)^(5/2)*a^3*c^4) + 3 
15*sqrt(2)*(11*A - I*B)*log(-(sqrt(2)*sqrt(c) - sqrt(-I*c*tan(f*x + e) + c 
))/(sqrt(2)*sqrt(c) + sqrt(-I*c*tan(f*x + e) + c)))/(a^3*c^(3/2)))/(c*f)
 
3.8.86.8 Giac [F]

\[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}} \, dx=\int { \frac {B \tan \left (f x + e\right ) + A}{{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{3} {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^3/(c-I*c*tan(f*x+e))^(5/2),x 
, algorithm="giac")
 
output
integrate((B*tan(f*x + e) + A)/((I*a*tan(f*x + e) + a)^3*(-I*c*tan(f*x + e 
) + c)^(5/2)), x)
 
3.8.86.9 Mupad [B] (verification not implemented)

Time = 9.99 (sec) , antiderivative size = 490, normalized size of antiderivative = 1.58 \[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^3 (c-i c \tan (e+f x))^{5/2}} \, dx=-\frac {-\frac {A\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^3\,2541{}\mathrm {i}}{640\,a^3\,f}+\frac {A\,c^3\,1{}\mathrm {i}}{5\,a^3\,f}+\frac {A\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^4\,77{}\mathrm {i}}{32\,a^3\,c\,f}-\frac {A\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^5\,231{}\mathrm {i}}{512\,a^3\,c^2\,f}+\frac {A\,c\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^2\,33{}\mathrm {i}}{20\,a^3\,f}+\frac {A\,c^2\,\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )\,11{}\mathrm {i}}{30\,a^3\,f}}{6\,c\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{9/2}-{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{11/2}+8\,c^3\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{5/2}-12\,c^2\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{7/2}}+\frac {\frac {B\,c^3}{5}-\frac {231\,B\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^3}{640}+\frac {3\,B\,c\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^2}{20}+\frac {B\,c^2\,\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}{30}+\frac {7\,B\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^4}{32\,c}-\frac {21\,B\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^5}{512\,c^2}}{a^3\,f\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{11/2}-6\,a^3\,c\,f\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{9/2}-8\,a^3\,c^3\,f\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{5/2}+12\,a^3\,c^2\,f\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{7/2}}-\frac {\sqrt {2}\,A\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-c}}\right )\,231{}\mathrm {i}}{1024\,a^3\,{\left (-c\right )}^{5/2}\,f}+\frac {21\,\sqrt {2}\,B\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {c}}\right )}{1024\,a^3\,c^{5/2}\,f} \]

input
int((A + B*tan(e + f*x))/((a + a*tan(e + f*x)*1i)^3*(c - c*tan(e + f*x)*1i 
)^(5/2)),x)
 
output
((B*c^3)/5 - (231*B*(c - c*tan(e + f*x)*1i)^3)/640 + (3*B*c*(c - c*tan(e + 
 f*x)*1i)^2)/20 + (B*c^2*(c - c*tan(e + f*x)*1i))/30 + (7*B*(c - c*tan(e + 
 f*x)*1i)^4)/(32*c) - (21*B*(c - c*tan(e + f*x)*1i)^5)/(512*c^2))/(a^3*f*( 
c - c*tan(e + f*x)*1i)^(11/2) - 6*a^3*c*f*(c - c*tan(e + f*x)*1i)^(9/2) - 
8*a^3*c^3*f*(c - c*tan(e + f*x)*1i)^(5/2) + 12*a^3*c^2*f*(c - c*tan(e + f* 
x)*1i)^(7/2)) - ((A*c^3*1i)/(5*a^3*f) - (A*(c - c*tan(e + f*x)*1i)^3*2541i 
)/(640*a^3*f) + (A*(c - c*tan(e + f*x)*1i)^4*77i)/(32*a^3*c*f) - (A*(c - c 
*tan(e + f*x)*1i)^5*231i)/(512*a^3*c^2*f) + (A*c*(c - c*tan(e + f*x)*1i)^2 
*33i)/(20*a^3*f) + (A*c^2*(c - c*tan(e + f*x)*1i)*11i)/(30*a^3*f))/(6*c*(c 
 - c*tan(e + f*x)*1i)^(9/2) - (c - c*tan(e + f*x)*1i)^(11/2) + 8*c^3*(c - 
c*tan(e + f*x)*1i)^(5/2) - 12*c^2*(c - c*tan(e + f*x)*1i)^(7/2)) - (2^(1/2 
)*A*atan((2^(1/2)*(c - c*tan(e + f*x)*1i)^(1/2))/(2*(-c)^(1/2)))*231i)/(10 
24*a^3*(-c)^(5/2)*f) + (21*2^(1/2)*B*atanh((2^(1/2)*(c - c*tan(e + f*x)*1i 
)^(1/2))/(2*c^(1/2))))/(1024*a^3*c^(5/2)*f)